
 

 

Peaceful Monitoring of Crowds 

Pierre BERNAS, Guillaume NEE, Philippe DRABCZUK
1
 

1
EVITECH – www.evitech.com  – +33.820.2008.39 

1. Introduction 

« Peaceful Management of Crowds » is probably the 

closest English translation of the French expression
1
 

which relates to techniques for checking and 

maintaining Public Order in situations with large 

crowds, and/or particularly dense and mobile crowds 

such as those observed in large transport 

infrastructures, events or parks, in demonstrations, or 

in large cities centers (all such places are termed 

“sites” in this paper). 

 

Here, we propose a subdivision of this 

“Management” activity of “Crowd controllers
2
” into a 

“Preparation” step, consisting in prior actions taken 

before the crowd arrives (cf. practices, organization in 

[25]) ; a “Monitoring” step, which consists in 

observing and establishing a diagnosis of the 

situations at different spots of the sites once the 

crowd is there ; some “Action” steps, which concern “live” interactions with the crowd (via such 

infrastructure means, as sounds, lights, billboards, or by people, such as order and rescue) ; and finally a 

“Feedback” step, which capitalizes on all the crowd controllers‘ knowledge once the crowd situation is 

terminated (e. g. in [25], a review of recorded videos is proposed as a good practice to assess and improve 

crowd control procedures). 

 

In this field, it is crucial to ensure that (1) everybody arrives safely at his/her target place, and (2) following 

the authorized paths. Individual questions (such as identity, behavior)
3
 are not relevant for peaceful crowd 

management.  

 

However, many technical or social science studies (e. g. [22]) have addressed the “Monitoring” step with a 

behaviorist point of view, considering that information about observed behavior is a result that should 

simply be obtained or deduced from observation, and hence that this behavior would reveal any possibly 

dangerous situations. Fortunately or not, this approach seems a little too restrictive. 

 

Hence, we would like here to generalize this “Monitoring” concept, firstly because we consider that 

“behavior” relates to privacy, and is not immediately related to Public Order Maintenance, and further 

because: 

• Crowd observation contributes to the detection of invisible events that those observed perceive 

(even though they are not taking part in these events), e. g. by stopping suddenly and staring at 

some point, or by fleeing suddenly, 

• major accidents in Crowds can be the consequence of successive situations which may begin by 

non accidental events or benign people motion and arrangements. Thus the observation of the 

latter could help prevent similar accidents. 

The first concept above consists in using crowd itself as a detector of incidents in the neighborhood. 

The second concept above was already referred to under the name of “weak signals” in the ESRAB report 

[1] in 2006. However, although it is obvious that sometimes “weak signals” precede an accident (e. g. in a 
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3
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situation where flows of people take stairways downwards to a place where similar flows of people cannot 

get out or escape at the same velocity), it is neither obvious nor demonstrated that “weak signals” always 

precede accidents (e. g. someone pushed on rail tracks or terrorist attacks). However, considering the 

variety of accidents that may occur, it is clear that some “weak signals” are often available. For example, in 

a situation where many people are choking because of a small gas leak, firstly identified as “a smell”, this 

"smell" would precede a bigger gas leak, leading everybody to faint and fall on the ground. In this case, 

choking of a fraction of the crowd when passing a given spot would be a weak signal. 

 

This paper stems from work done in the framework of the RAPID DGA CrowdChecker project, led by the 

Evitech SME and the Willow research lab (ENS/CNRS/INRIA) between October 2010 and August 2012. 

 

We present a tool for peaceful monitoring of crowds. We will first detail our aims in terms of “Monitoring”, 

and then show how we developed video analytics monitoring tools, in the framework of this project. 

 

2. Crowd monitoring aims 

2.1. Accident criticalities 

When we examine worldwide calls for tenders concerning crowd monitoring systems in the last 5 years (e. 

g. for transport sites, museums, cities, religious sites, shopping centers…), we note that most requirements 

finally address people counting. Even if the terms of security, density, and danger are mentioned, the 

ultimate requirements lead to people counting: detect groups, count people, detect if an attendance level is 

reached, etc. 

 

Now crowd observation cannot be reduced to counting. Counting people, of course, is very useful for 

detecting overcrowding of a site, or for checking the business done in a shop, or for adapting the rent of a 

shop surface to the attendance in a shopping center. It is also somehow related to interactions between 

people in the streets, which might at some point cause “troubles”, because of an unexpected number of 

people. Hence, counting is useful, but should not be considered the ultimate destiny of crowd monitoring. 

 

Examining the criticity of aeronautical equipment in civil aircraft has led to normative documents (DO178 

[2]) that characterize criticity as the loss that a failure of that equipment would produce. Events leading to 

loss of the aircraft and death of all passengers is most critical (level A), while inconveniences to the cabin 

crew is at a lower level (D), and what does not affect the flight is level E. Failure of equipment leading to a 

death or the injury of several people would be intermediate (levels B/C). The mention of a risk matrix also 

appears in [25] as a tool for crowd incidents evaluation. 

 

Likewise, in Crowd monitoring, the most critical situations (level A), that are to be detected as fast as 

possible, is the collective accident where we would observe a large number of people “on the ground” : due 

to the fall of everyone in all or part of the site, or in part of the site (whatever the cause : individuals 

crushed in panic, gas effects, temperature, explosion, earthquake, etc). At somewhat lower levels (B, C), the 

most important situation to be detected is the precursor of such collective accidents, or a situation where 

several people are injured (e. g. a fast car in crowd), etc. On a still lower level, there are cases that should 

alert the security team since they may be of interest, possibly endangering one of several people, and later, 

cases inducing crowd flows efficiency problems (level D). 

 

2.2. System logical paradigm 

In order to ensure that everybody will safely and legally follow his/her path in the collective motion, there 

are a few "control" parameters of interest, regarding the progression of people: 

• directions of motion, and their spatial distribution, 

• speeds, and their spatial distribution, 

• crowd density, and spatial distribution. 

This is of course our first target. 

 

Secondly, we are interested in a system that is essentially determinist. A determinist system is a system 

governed by causality. We define a condition that implies a rule, and we want this rule to be activated when 

the condition occurs. This is inherent to law and security : no room left for randomness. 

 



 

 

A non-determinist system would typically be a system fully based on a “training” or a “learning” phase  

 occurring in some large and unknown or uncontrolled crowd characteristics. Later, because of the data 

collected and organized inside the system, some learnt rules would trigger an alarm when a situation has 

characteristics that conform to the learnt danger configurations. Such systems need very large learning 

data, and their convergence is hard to obtain (particularly when targeting 100% precision), they can raise 

many unexpected alarms, and they can miss important events because these events were never seen 

before, and thus not learnt before. This is hopefully the case with crowd accidents: they are rare, and thus 

there is a very small learning corpus about crowd accidents. 

 

Hence, if a learning strategy seems necessary in order to improve the system as the time goes by and new 

weak signals are found, we propose that the crowd monitoring system be based on deterministic principles, 

with supervised evolution capacities from learning, limited to weak signals, and after manual supervision. 

 

Following this approach, we have identified several generic rules in terms of crowd monitoring : 

• Immediate detection of a "dangerous situation" which should lead to a warning to crowd 

controllers, 

• Immediate detection of identified and known accident precursor situations, which have been 

established on experience, either on site or from other site observations, 

• Collection of statistics based on the aforementioned parameters in order : 

• to warn of a dangerous situation (specifically, the repartition of crowds between different 

parts of the site can be of interest, if not balanced), 

• to compare with other similar “days” or “events” (in order to be aware of unexpected 

conditions, especially if the number or the equipment of crowd controllers is not appropriate 

or if assumptions made in the preparation step
4
 were inappropriate), 

• and to compare the current aforementioned parameters with those preceding known 

accidents in order to provide a weak signal detection, and possibly also to identify a situation 

which would be candidate to become a known precursor situation. 

 

2.3. Dangerous situations 

We have thus identified the following needs, which will be complemented as experience accumulates in the 

future: 

• Detection of several/many people who fall, 

• Detection of threshold crossing (expressed in speed, density, possibly compounded with direction 

conditions, such as detection of high density -e. g. crushing risk-, or high speeds in several 

directions -e. g. collision risk-, or people running in a given direction -e. g. risk of falling from a train 

platform-). 

• Detection of a car/truck or a big object entering the crowd (possibly quickly, endangering people in 

the crowd), 

• Detection of smoke growing from the crowd or reaching the crowd (fire/choking danger), 

• Detection of sudden dispersion of a dense immobile group in sparse mobile crowd (e. g. possibility 

of a left victim, or manifestation of sudden fear...). 

• Detection of one or several people walking in non-authorized direction (e. g. climbing in an aircraft 

by the exit), 

• Detection of somebody crossing a crowd flow, possibly with a speed condition (e. g. entering by 

the exit, or suicide-bomber progressing quickly to control), 

• Detection of somebody stopping (or walking in reverse direction of) the crowd flow it formerly 

belonged to (trouble in overall people progression), 

• Detection of a dense immobile group formed in sparse mobile crowd (trouble in the overall people 

progress), 

 

2.4. Events to detect, using crowd as a detector 

As noted above, there are also situations where the observed crowd is itself a detector of events that are 

not seen by the cameras. We should hence detect situations such as: 

• Many people suddenly run, or stop (fear), 
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• Crowd flow suddenly changes (the place is suddenly empty, or, contrarily, there is a sudden rush of 

people, …), 

• Detection of some “hole” formed in the mobile crowd, and crowd flows passing on both sides of 

the hole (possible fall or incident not visible on the ground because of people around), 

• Likewise, detection of the formation of a standing group inside a mobile crowd, perhaps revealing 

an invisible fall in the middle, or a fight. 

 

2.5. Weak signals 

Lastly, we need a statistical system in order to collect and compile observation data, for the various needs 

expressed above, and to allow the definition of accident precursors. Such a statistical system is useful, when 

several successive accidents occur, in order to facilitate  the "Feedback" step mentioned in §1, e. g. for place 

layout, crowd flow indicators. In that system, supervised learning algorithms may help collecting 

remarkable similarities preceding several different accidents (candidates to become a weak signal). 

 

3. Crowd monitoring by video analytics 

In the CrowdChecker project, we wished to propose and demonstrate a tool for automatically supporting 

such monitoring. 

 

3.1. Conditions of observation of crowds 

We chose conditions as close as possible to real conditions in transport sites, cities, museums, etc, and used 

previously installed indoor and outdoor CCTV color cameras. We developed a video analytics solution for 

real time monitoring of crowds. We assumed that the crowd participants would not massively carry large 

Mexican hats, or umbrellas –this is is almost always the case indoors, and outdoors in decent weather for 

dense crowds (Note that bad weather conditions -very hot, or very rainy- have often been observed to 

reduce crowd density…). 

 

Most of these cameras are installed in ceilings and observe the crowds from above. However, the limited 

visibility of people in a crowd is an issue, as we will detail here. 

 

Suppose a camera observes a crowd from above in a flat area. If the camera has an angle α with the flat 

ground (in typical installations receiving crowds, ), and if somewhere in the crowd two 

persons are following each other in the direction of the camera at a head top distance of D
5
, if the second 

one is smaller by D*tan(α) or more, he or she is completely hidden by the first one from the camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 : crowd observation 

Assume that people's sizes are distributed according to a Gaussian law with mean m and standard variation 

s. The distribution of size differences between two neighbors is then a Gaussian law of mean 0 and standard 

variation s* . The probability that a head top is hidden by the head just before it in the camera field is 

the Gaussian tail beyond  for a Gaussian law, centered at, and standard N (0, 1). 

According to values of D and α, probability values are given by Gaussian law tables. 
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 D is the distance between two successive head tops, typically 50 cm in a dense crowd, 1 meter or more in a sparse crowd. 



 

 

If we assume that the standard deviation in a human population is e. g. 15 cm (which sounds reasonable for 

men, women, children), we have the following probabilities of hidden head tops, at the center of the 

camera image : 

 

Average angle of view Dense crowd (D=50 cm) Sparse crowd (D=1 m) 

α=45° 1% - 

α=30° 8,7% 0,33% 

α=20° 19,5% 4,4% 

α=10° 33% 20,4% 

Table 1 : camera hidden head tops in crowd 

 

If the camera is far enough from the crowd (many people seen) this probability can be interpreted as the 

average proportion of head tops at the center of the image that are hidden. 

 

If we have a camera with a lean angle of 20° and a vertical field of view of 20° or more, there will be almost 

no hidden head top at the bottom of the image, 4,4% at 20°, and more than 20% that are just completely 

hidden at 10° or above. 

 

Now, if we specify that in order to detect a head, we need for example at least 5 cm
6
 of height of the top of 

this head to be visible, these figures are dramatically increased (e. g. for α=20°, and D=50 cm, 27% of heads 

are not visible over 5 cm height (for 19,5% of the heads that are not visible at all), and 7% (instead of 4,4%) 

in case of sparse crowd, when α=20° and D=1 m).  

 

In conclusion, it is important to notice that the best observations (counting, event detection...) using 

existing installed CCTV cameras can be done at the bottom of most camera scenes (at angles of view 

between 45° and 90° off the horizon). It soon becomes uncertain or completely impossible at angles 

between 20° and 0° off the horizon. Without hats or umbrellas, people's heads which are very close to the 

camera are thus all quite easy to observe (large in pixels, good angle of view, good visibility), while further 

from the camera they become very quickly far more difficult to observe (small in pixels, angle of view 

leading to head overlap and hiding, and thus bad visibility). 

 

As a general rule of thumb, it is important to notice that counting in dense crowd by a camera leads to 

underestimates of order of 10% to 40% or more when the angle varies from 30° to 10° above the ground. 

 

As a result of this task, we integrated a 3D calibration model of the image in order to be able to estimate 

the real size of a head at a given position in the image. 

 

3.2. Subtracting background 

Many video analytics systems based on background subtraction techniques [20]. These techniques consist 

in establishing a stability model of the "background" of the scene (visible ceiling, ground, walls, ...), over 

which several targets are moving. The basic assumption of these techniques is the assumption that target 

frequency and density are lower than background observability (for one pixel in the image, most of the time 

this pixel concerns the empty background). The background model is updated periodically in order to 

manage/reflect light changes (daylight, shades, day/night, etc). 

When a stable change happens (e. g. when a car parks in a parking lot), this change is integrated in the 

background (or in a middle term background assumption) after having been immobile for a while, so the 

detection of new targets is enabled when passing in the foreground of this change. 

 

However, these assumptions are no more valid in long periods of dense crowd situations. In a background 

model, dense crowd is a perpetually moving large blob over a rarely seen background (Furthermore, this 

background is heavily changed by crowd shades). Background model updating is meaningless over long 

periods because of this crowd blob. Furthermore, the crowd blob has fixed coordinates, and thus analysis of 

people's positions (expected as independent targets) is not possible with these techniques. 
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 This will depend on the detection algorithm. Invisible heads cannot be counted, but there is also a minimum head size to be 
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shoulders, 25 to 35 cm would be requested instead of the 5 cm assumption here. 



 

 

3.3. Putting a cross on each “head” 

Locating and tracking properly each person in a crowd would be a very good solution for all the questions 

we want to address (cf. §2.2) about density, speeds, directions of people. Knowing each person’s position 

would be the solution for detecting almost all the situations we specified in §2. 

 

Several approaches have been pursued in order to identify and track different combination of body-part 

(head, shoulders, torso, arms, …) shapes in the crowd [3,4,5,6,7,8,9,10]. Some of them have addressed the 

search of ellipsoidal shapes, others have addressed head shape learning. Noticing that the shape of the 

head over the shoulders of an individual resembles the Ω Greek character, some work has also addressed 

specific searches of the Ω shape [4]. 

 

In the Crowdchecker project, the project team has tried to reproduce and improve these algorithms as a 

general approach for head detection and tracking [11], in order to measure their performance and their 

ability to run at real time over one core of a good PC hardware, which would be a reasonable cost target for 

such a software
7
.  

In [11] the use of a regression-based person density estimation [24] was studied to improve person 

detection and tracking in crowded scenes. In this approach, a density map was used to predict head 

localizations. 

Figure 2 : overview of the person detection model 

For doing this, the person detection task was formulated in a global energy minimization framework (Eq. 

3.1), that involves a joint energy function incorporating scores of individual detections , pair-wise non-

overlap constraints , and constraints imposed by the estimated person density in the scene  (cf. 

Figure 2). 

  (Equation 3.1) 

where  is a single N-vector representing all detections in the entire image ( if detection at a 

location  is valid),  is a confidence score N-vector corresponding to each location , is a  

matrix where  if detections at locations  and  have a significant area overlap ratio and 

 otherwise,  is a density regression based estimator,  is a matrix multiplication 

representing an evaluation of the density of the active detections. The  matrix  is designed so 

that each row  is a Gaussian window of size  centered at . 

 

In simple words, Eq. 3.1 helps detecting heads where the crowd is the denser, and helps avoiding false head 

detection where the crowd is sparse. 

 

Significant gains were obtained in detection and tracking performance on challenging videos of crowded 

scenes with varying density (see Fig. 3), compared to the baseline detector [23] itself (curve a) to the latter 

combined with geometric filtering involving precedence given to detection size, or to the baseline detector 
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combined with time consistency constraints using agglomerative clustering (curve b, c). The density-aware 

detector (red curve d) definitely outperforms all three other detectors. Detection results for the detector 

using ground truth density estimates obtained by smoothing ground truth person detections with Gaussians 

have also been drawn (green curves e to h) and reveal the benefits of the density-aware detector, when 

jointly used with a competitive density estimation method (but obviously only as a validation technique). 

 
Figure 3 : precision/recall curves 

Despite several improvements that were proposed by the project's research team, we found that we could 

not detect more than 50% of true heads, while 15% of false heads were detected ; alternatively, the 

numbers were 70% true heads and 40% false (red curve). Moreover, these unsatisfactory numbers required 

unreasonable computation time with cost effective hardware. 

 

However, this approach can be of interest when used in a small detection area, and thus the principle was 

retained for local uses, with the visibility limits exposed in §3.1, since observing a full head Ω shape requires 

something about 30 cm, thus significantly reducing the fraction of individuals detected, especially when the 

distance to the camera increases. 

 

3.4. Learning crowd situation patches 

During the Crowdchecker project, the project team has also investigated a completely different approach 

for learning crowd situation patches (small pieces of videos from a fixed camera above the crowd, in size 

and in duration, that would constitute a typical situation). Here [12], these patches are aggregated via a 

learning strategy, and described all videos as aggregates of multiple patches, in image space and time. 

 

This approach was found to be very useful for predicting individual paths in crowds, but unreliable when 

considering the entire crowd. Furthermore, it was inordinately time consuming on reasonable hardware. 

 

3.5. Analyzing motion 

Finally, we investigated the motion estimation approaches [13, 14, 19], in order to identify moving crowd 

areas (and thus speeds and directions) by their motion. Motion estimation has been investigated at length, 

but its use in crowds is complex because of the rather "brownian" motion of people in crowds. Although it 

has been shown [15] that very simple rules can account for people’s motion in crowds, a crowd is not made 

up of solid groups with homogeneous speed and direction (except in military parades!). 

 

Different motion estimation methods were evaluated for this task : 

� Optical flow methods : differential methods based on the assumption that the brightness (I) of a 

moving point (x, y) is constant along the time t : . In 

complement : ◦  Horn and Shunck [26] assume smoothness of the global flow, ◦ Lucas and Kanade [27] assume that the displacement of a pixel p is small and related to its 

neighboring pixels (inside a predefined window). In addition, Shi and Tomasi [28, 29] corner 

detection algorithm can be applied prior to motion estimation in order to select the points of 



 

 

interest at which motion estimation will be applied. This method is widely used in crowd flow 

estimates [21]. 

� Block matching consists in dividing the image into small overlapping blocks and matching them in 

successive frames according to a similarity criterion (generally the Sum of Absolute Differences). In 

[22], an example of block matching techniques in a more general method for crowd monitoring is 

presented. 

 

When comparing these methods, a major 

drawback of the Horn and Shunck method is its 

inability to extract motion discontinuities due to 

its global smoothness aspect. This is not the case 

for the two other previously mentioned methods, 

at a cost of some false motion estimation inside 

homogenous regions. 

Ideally, we wanted to detect large crowd streams 

(green), as well as “long” individual tracks (red), 

which didn’t follow these streams.  

 

Thus, time integration of individual motions 

helped to identify the main crowd flows in the 

image, as well as smaller singularities, using a 

tracking complement. 

Figure 4 : crowd motion tracking 

This approach was found costly in computation time, but performing at real time. Some encoding features 

included in the digital compressed image flows (e. g. H.264 …) could help to reduce this cost. 

 

When motion stops, the method must be complemented by detection of immobile people. When trying to 

detect an immobile group inside a mobile crowd, we had to discriminate immobility because of emptiness 

from immobility because of stopped crowd. Thus, a long term tracking model was designed to store 

information about immobile people. 

 

3.6. Estimating people density 

Then we completed this approach with a density model, in order to have full information on the number of 

moving people, their direction and speed. We studied different models in order to estimate granularity, as 

in Refs [16, 17, 18, 24]. 

 

The authors of [24] propose a supervised learning general framework for density estimation. They assume a 

set of training images with dense feature map  at each pixel p and ground-truth annotation of 

head positions . The density functions in this approach are real-valued functions over pixels, whose 

integrals over image regions should match the object count. For each training image I, the ground truth 

density function is defined as a kernel density estimate based on the provided points: 

 

where  denotes a normalized 2D Gaussian kernel evaluated at p, with the mean at the 

user-placed dot P, and an isotropic covariance matrix. Given this set of training images together with the 

ground truth density functions, the linear transformation of a given feature representation that 

approximates the density function at each pixel is learned: 

   

where  is a parameter vector of the linear transform that will be obtained from the k training data 

by minimizing the regularized MESA distance: 

     

Once trained, an estimate for object counts can be obtained at every pixel or in a given region by 

integrating across the area of interest. 

This density model allowed us to develop flow counting functions, as well as area counting for a standing 

crowd. 



 

 

Figure 5 : typical crowd situations studied 

in previous works 

3.7. Project results 

This led us to a demonstrator which was tested with video 

records and live videos. Many previous studies about crowd 

analysis have addressed sparse crowd, as examples shown in 

Figure 5. In our work, we wanted to address also dense 

moving crowd situations. We have tested our algorithms on 

videos of dense moving crowd. We provided several videos 

with ground truth [11, 12] that are available for further 

research works. Our system accurately estimates crowd 

density in moving crowd datasets where average density is 

2.1 person/m
2
 (a factor of 1.5 to 3 denser than crowd 

datasets often used by state of the art methods). Higher densities can be encountered in real situations (up 

to 7 or even 9 persons per m
2
), but at this stage the move is considerably slow, no more than several 

meters per minute: contacts between people limit motion capacity [30]. 

 

Moreover, our system automatically detects, in real-time, a singular behavior such as a reverse walking 

without any assumption about shape (even if it is partly occluded and if it overlaps other crowd 

components). This detection operates on targets as small as a square of 10-20 pixels side (size depending 

on contrast). The demonstrator gives very good results on implemented functions such as counting, 

detecting individual reverse walk, speed measurement of crowd flows, the detection of above threshold 

speed or density, etc. A few examples of detection images for such situations are shown below: 

   
Figure 6 : (a) density map, (b) man crossing the crowd flow, (c) sudden crowd acceleration 

Several features of the demonstrator are shown here (Fig. 7). Angles of view w. r. t. horizon range from 

43,5° at the bottom of the image to 17,3° at the top (cf. §3.1). 3D calibration provides the ground surface of 

the drawn area (24.1 m
2
). Counting and density estimates in this area are displayed (1.0 pers/m

2
). Crowd 

flow counting across drawn lines (on the left and on the right) is displayed. An alarm is raised about a 

person crossing the crowd stream (blue square). The image on the right corresponds to the direction 

vectors and speed estimations of the main crowd flow (purple) and of the alarming target (green), 

computed at a reduced scale. 

Ground truth density in the drawn 

area is 1.04 pers/m
2
 (error = 4%). 

Speed of the main crowd stream is 

measured instantly at 2.10 km/h, 

when long term ground truth speed 

is rather at 2.24 km/h (error = 6.6%). 

Use of particle advection is under 

study for improving the accuracy. 

Figure 7 : (a) simultaneous density estimation, counting, and detection, (b) speed and direction 



 

 

Future works will address complementing the model in order to detect smoke in a crowd, vehicle in a 

crowd, and other applications mentioned above in §2.3 and §2.4. 

 

4. Perspectives 

Proposing tools for detecting dangers in crowds in the public space is a very ambitious target. 

 

As mentioned above, the functional needs for detection presented in this paper are not included so far in 

the calls for tenders. It will probably take some time before they are introduced.  

 

Furthermore, because of the intrinsic nature of a crowd, each crowd situation can lead to an unlimited 

number of accidents. Considering all possible risks is staggering. Such a tool changes the responsibilities of 

the crowd surveillance operators as well as their organizations: they can no longer say that they didn't see 

an accident, if the system warned them of it. Their responsibility for help assistance is enhanced, and they 

take full responsibility in case of non-assistance in case of unmanaged alarm(s). 

 

It is likely that once reluctance to acceptance is overcome, such systems will probably first enhance the 

Feedback step (cf. §1) of peaceful crowd management, then the Preparation step, and will ultimately be 

complemented by evolutions of crowd surveillance operators work organization, in order to adapt the 

Action steps. 

 

We are confident that global security shall be improved.  
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